

Integrated Simulation Approaches for Environmental and Socioeconomic Sustainability of SSbD-Compliant Lubricants

5th Stakeholder workshop on "Safe and sustainable by design"

<u>Dr. Jonas Hoffmann</u>, Ashrakat Hamed GreenDelta GmbH, hoffmann@greendelta.com

Greendelta openica

THE PROJECT

SITOLUB - SIMULATION TOOLS FOR THE DESIGN OF SAFE AND SUSTAINABLE LUBRICANTS

HORIZON Research and Innovation Action: Computational models for the development of safe and sustainable by design chemicals and materials

Total cost: 6.23 Mio. €, 2024-2028 12 partners 5 EU countries 2 Associated countries

SSbD CASES

INDUSTRY

NEEDS 🙆

- a) low friction **perfluoroalkyl substances** (persistent)
- b) substitution of chlorinated paraffins (dioxins)
- c) substitution of corrosion inhibitors (endocrine disruptor)

SITOLUB WORKING PLAN

Simulation of SSbD can be:

- Cheaper
- Faster

SITOLUB SSbD FRAMEWORK

SITOLUB SSbD FRAMEWORK

SAFETY:

SUSTAINABILITY:

endelta 🗖

Environmental Impact Assessment

Socio-economic Assessment

Step 4: Environmental Sustainability Assessment

SITOLUD

Bio-based

lubricants

SSbD-COMPLIANT LUBRICANTS

PRODUCTION: BIO VS. PETROL-BASED LUBRICANT

LCIA: BIO VS. PETROL-BASED LUBRICANT

Normalized bar chart, referenced to 1 kg, ecoinvent 3.10 cut-off, EF 3.1 method

ightarrowEutrophication and Ecotoxicity are up \checkmark ightarrowFossil use and climate change as well ×

→Mismatching model approach (stochiom., no scale up) and TRL level result in biased data!

→Novel bio-lubricant would not be 'more sustainable' than existing technologies?

USE PHASE AND EoL

de Luna et al. Biomass Conv. Bioref 2023

Wear protection

Products	Functional unit
Mineral oil Rapeseed oil	1 kg of oil
Mineral oil Synthetic ester Rapeseed oil	1 m³ of hydraulic fluid
Mineral oil Soybean oil	Area of aluminium rolled
Mineral oil Rapeseed oil ester Palm oil ester Animal fat ester Used cooking oil ester	1000 work pieces produced
Mineral oil Rapeseed oil	Volume of oil used to cut 1000 m ³ of wood ^b

Cavallaro et al. Environmental life-cycle assessment(LCA) of lubricants **2013** Biolubricants, 527–564.

Performance-based FU

Used Oil Management and Beneficial Reuse Options to Address Section 1: Energy Savings from Lubricating Oil Public Law 115-345, Report to Congress, **2020**, Washing.

Various EoL options

Design chemicals to degrade without health or environmental risks. Design for reuse, waste collection, and recycling.

SSbD7: Design for end-oflife

\rightarrow We need to further integrate 'sustainable performance' at low TRL

FULL LIFE CYCLE WITH PARAMETERS

→ Parametrized LCAs will allow fully integrated SSbD approaches

(Step 5:) Socio-economic assessment

CRITICALITY ASSESSMENT

Following the logic of LCA, Bargiacchi et al. (2022) and Zapp and Schreiber (2021) proposed a **criticality indicator** where characterization factors (CF) can be calculated by:

$$CF = \frac{SR_i}{c_i \cdot \left(1 - IR_i \cdot (1 - EoL_{RIR})\right)}$$

- SR_i Supply Risk of resource i
- c_i European consumption of resource i
- IR_i Import reliance of resource i

EoL_{RIR} End-of-life recycling input rate

Petroleum based Soybean based 2.00E-03 1.80E-03 (inaccurate) significantly 1.60E-03 higher consumption of CRM by 1.40E-03 1.20E-03 bio-based material 1.00E-03 8.00E-04 6.00E-04 4.00E-04 2.00E-04 0.00F+00 Gallium Graphite Holmium Samarium Cerium Neodymium Dysprosium Critical Raw Material

Comparison between two lubricants using generic information

- Link to ecoinvent database to be able to calculate the CRM on both the supply chain and the foreground data
- Limitations of relying on generic databases for low TRL
- Supply chain for soybean could be linked to **incorrect industries**

Bargiacchi E, Puig-Samper G, Campos-Carriedo F, Iribarren D, Dufour J, Ciroth A, et al. D2.2 Definition of FCH-LCA guidelines WP2 Reformulation of current guidelines for Life Cycle Assessment. 2022 Zapp P, Schreiber A. D3.1 Material criticality indicator. Brussels: Clean Hydrogen Partnership; 2021

Social LCA – Preliminary comparative assessment

soca = ec invent + PSILCa 🔘

SITOLUD

Petro-based lubricant - created										E Soybean lubricant									
ndicator results											✓ Indicator results								
	HO	MO	LO	NOP	NOR	VLR	LR	MR	HR	VHR	ND	NA	HO MO LO NOP NOR VLR LR MR HR VHR ND						
🗸 🖿 Local Community	0%	0%	0%	0%	10%	15%	16%	17%	16%	10%	16%	0%	✓ Local Community 0% 0% 0% 0% 8% 17% 18% 12% 10% 17%						
Access to material resources	0%	0%	0%	0%	0%	58%	9%	11%	6%	16%	1%	0%	→ Access to material resources 0% 0% 0% 0% 0% 54% 20% 8% 3% 12% 1%						
Environmental Footprints	0%	0%	0%	0%	49%	6%	17%	14%	1%	12%	1%	0%	> ■ Environmental Footprints 0% 0% 0% 0% 44% 7% 27% 8% 3% 10% 1%						
> 🖿 GHG Footprints	0%	0%	0%	0%	4%	0%	0%	49%	47%	0%	0%	0%	→ ■ GHG Footprints 0% 0% 0% 0% 5% 0% 0% 52% 43% 0% 0% 0%						
> Local employment	0%	0%	0%	0%	0%	0%	39%	2%	1%	7%	51%	0%	> ► Local employment 0% 0% 0% 0% 0% 0% 18% 4% 2% 8% 68%						
> 🖿 Migration	0%	0%	0%	0%	0%	20%	8%	8%	7%	1%	56%	0%	> ► Migration 0% 0% 0% 0% 0% 30% 8% 8% 5% 3% 46%						
> 🖿 Respect of indiaenous riahts	0%	0%	0%	0%	20%	0%	27%	31%	18%	0%	3%	0%	> ► Respect of indigenous rights 0% 0% 0% 0% 10% 1% 33% 43% 9% 0% 4%						
> 📁 Safe and healthy living conditions	0%	0%	0%	0%	0%	17%	15%	3%	30%	35%	0%	0%	→ Safe and healthy living conditions 0% 0% 0% 0% 0% 24% 16% 4% 20% 34% 1%						
🗸 💻 Society	1%	2%	3%	0%	1%	38%	10%	9%	25%	11%	0%	0%	v Society 1% 1% 4% 0% 3% 33% 18% 13% 19% 9% 0%						
> Contribution to economic development	2%	4%	5%	0%	0%	39%	8%	6%	22%	14%	0%	0%	> ► Contribution to economic development 2% 2% 7% 0% 0% 31% 18% 13% 16% 12% 0%						
> 📁 Health and Safety	0%	0%	0%	0%	1%	38%	11%	12%	29%	8%	0%	0%	→ Health and Safety 0% 0% 0% 0% 6% 34% 17% 14% 22% 7% 0%						
Value Chain Actors	0%	0%	0%	0%	0%	3%	9%	29%	12%	29%	17%	0%	✓ Value Chain Actors 0% 0% 0% 0% 3% 6% 23% 12% 37% 19%						
> 🖿 Corruption	0%	0%	0%	0%	0%	6%	4%	34%	1%	32%	24%	0%	> ► Corruption 0% 0% 0% 0% 0% 6% 17% 21% 2% 34% 21%						
> 🖿 Fair competition	0%	0%	0%	0%	0%	3%	24%	0%	5%	48%	19%	0%	> ► Fair competition 0% 0% 0% 0% 0% 4% 1% 0% 24% 47% 23%						
> 🕨 Promoting social responsibility	0%	0%	0%	0%	0%	0%	0%	54%	31%	8%	7%	0%	> ■ Promoting social responsibility 0% 0% 0% 0% 0% 47% 11% 31% 11%						
🗸 🖿 Workers	0%	0%	0%	0%	5%	25%	22%	16%	8%	10%	12%	0%	✓ Workers 0% 0% 0% 0% 6% 26% 18% 16% 12% 9% 12%						
> 🖿 Child labour	0%	0%	0%	0%	1%	85%	14%	0%	0%	0%	0%	0%	> ► Child labour 0% 0% 0% 0% 2% 82% 15% 0% 0% 0% 0% 0%						
> 🖿 Discrimination	0%	0%	0%	0%	0%	39%	2%	23%	4%	4%	28%	0%	> ▶ Discrimination 0% 0% 0% 0% 0% 43% 5% 14% 7% 11% 21%						
> 🖿 Fair Salary	0%	0%	0%	0%	0%	18%	30%	20%	2%	30%	0%	0%	→ Fair Salary 0% 0% 0% 0% 0% 19% 33% 22% 3% 24% 0%						
> 🖿 Forced Labour	0%	0%	0%	0%	0%	18%	30%	16%	2%	1%	33%	0%	> ► Forced Labour 0% 0% 0% 0% 0% 20% 28% 15% 3% 1% 33%						
Freedom of association and collective bargaining	0%	0%	0%	0%	41%	0%	29%	0%	3%	22%	5%	0%	→ ■ Freedom of association and collective bargaining 0% 0% 0% 0% 0% 48% 0% 18% 0% 5% 20% 9%						
> 🖿 Health and Safety	0%	0%	0%	0%	0%	35%	16%	13%	0%	6%	30%	0%	▶ ■ Health and Safety 0% 0% 0% 0% 0% 41% 15% 9% 1% 3% 33%						
> 🖿 Social benefits, legal issues	0%	0%	0%	0%	0%	6%	13%	51%	9%	21%	0%	0%	Social benefits, legal issues 0% 0% 0% 0% 0% 0% 7% 3% 55% 19% 16% 0%						
> 🖿 Working time	0%	0%	0%	0%	0%	0%	47%	7%	47%	0%	0%	0%	→ Working time 0% 0% 0% 0% 0% 0% 0% 27% 10% 62% 0% 0%						

HO/MO/LO High/Medium/Low Opportunity, VLR/LR/MR/HR/VHR Very Low Risk, Low Risk, Medium Risk, High Risk, Very High Risk, ND No Data, NA Not Available

- Based on the LCA database and LCC data, the sLCA can be performed in one database (SOCA)
- Petrol-based lubricant shows higher risks for stakeholders "workers", "local community", and "society"
 - Indicators: "Safe and healthy living conditions" and "Health and Safety"

SLCA-SELECTION ON SOCIAL INDICATORS

- Selection of the indicators for SSbD remains challenging
- While performing materiality assessment is needed as it depends on the stakeholders involved in the study – can be used as a complementary assessment
- However, stakeholders/expert judgement should not only be the contributing to the decision making but also policy/action plan goals and literature surveying
- Therefore, it is recommended to establish a set of indicators that is mandatory to assess in each life cycle

Social topics	 Raw materials acquisition and pre- processing 	2. Manufacturing	3. Distribution	4. Use	5. End of life
1. Access to material resources	5		3	1	1
2. Affordability	3		2		1
3. Child labour	5		1	1	1
4. Community engagement	4		1	1	1
5. Contribution to economic development	5				1
6. Corruption	5		4		1
7. Delocalization and migration	4	4	1	1	1
8. Discrimination and equal opportunities	4		1	1	1
9. Health and safety	5	5	5	1	1

Abbate, E., Garmendia Aguirre, I., Bracalente, G., Mancini, L., Tosches, D., Rasmussen, K., Bennett, M.J., Rauscher, H. and Sala, S., Safe and Sustainable by Design chemicals and materials - Methodological Guidance, Publications Office of the European Union, Luxembourg, 2024, doi:10.2760/28450, JRC138035.

Conclusion:

Instead of **empirical** SSbD studies, **SiToLub** focuses on **simulation!**

In LCA data/methods, there is a **strong bias** on **existing technologies**

For functional materials assess full life cycle (Use Cases, EoL options, Performance) already at early stage!

\rightarrow We argue for data-driven, integrated SSbD solutions allowing simulation

